Resit Exam - Statistics (WBMA009-05) 2020/2021

Date and time: January 29, 2021, 18.45-21.45h Place: Nestor Online Exam

Rules to follow:

- This is an online open book exam. Consultation of books and notes is permitted.
- You can use a simple (non-programmable) calculator.
- There are three exercises and you can reach 90 points.
- Always include the relevant equation(s) and/or short descriptions.
- We wish you success with the completion of the exam!

START OF EXAM

1. Hypothesis testing, p-value and confidence interval. 20 Consider a random sample of size n = 16 from a Gaussian distribution with known variance parameter $\sigma^2 = 4$, symbolically:

$$X_1,\ldots,X_{16}\sim\mathcal{N}(\mu,4)$$

and the two-sided test problem

$$H_0: \mu = -2$$
 vs. $H_1: \mu \neq -2$

Under H_0 we have that the statistic:

$$T(X) := 4 + 2\bar{X}_{16}$$

has a standard Gaussian $\mathcal{N}(0,1)$ distribution.

For solving the exercise use and only use the quantiles provided in Table 1.

- (a) Give the rejection region of a two-sided test to the level $\alpha = 0.05$. 5
- (b) Give the power of the two-sided level $\alpha = 0.05$ test at the true parameter value $\mu = -1$. 5

Now we assume that we have observed the realization $\bar{X}_{16} = -2.65$.

- (c) Give the p-value of the two-sided test. 5
- (d) Give an exact two-sided 80% confidence interval for μ . [5]

	α	0.5	0.75	0.9	0.95	0.975	0.99	0.99997
Γ	q_{α}	0	0.7	1.3	1.6	2	2.3	4

Table 1: Approximate quantiles q_{α} of the $\mathcal{N}(0,1)$ distribution.

2. Random sample I. 30

Consider a random sample of size n from a discrete distribution

$$X_1,\ldots,X_n\sim\mathcal{D}(\theta)$$

that depends on one single parameter

$$0 < \theta < 1$$

and whose density is given by:

$$f_{\theta}(x) = (1 - \theta)^{x-1} \cdot \theta \qquad (x = 1, 2, 3, \ldots)$$

It can be shown that this implies the expectation $E[X_1] = \frac{1}{\theta}$.

- (a) Compute the ML estimator of θ . 5 <u>**HINT**</u>: Check via the 2nd derivative whether you have a maximum.
- (b) Compute the Fisher information $I(\theta)$ for a sample of size n = 1. |5|

For the following two exercise parts (c-d) consider the test problem

$$H_0: \theta = 0.6$$
 vs. $H_1: \theta = 0.4$

- (c) Show that a statistical test that rejects H_0 if $\sum_{i=1}^n X_i > k_0$, where $k_0 > 0$ is a constant, is the UMP test for the test problem. 5 **HINT**: Apply the Neyman Person lemma.
- (d) Consider the UMP test from (c) with n = 1 and $k_0 = 3$. Compute the test level α . 5

For the last exercise part (e) assume n = 5 and the five realisations: $X_1 = 1, X_2 = 3, X_3 = 1, X_4 = 3$, and $X_5 = 2$.

(e) Make use of the asymptotic efficiency of the ML estimator to construct an asymptotic two-sided 80% confidence interval for θ. 10
<u>HINT</u>: See Table 1 from Exercise 1 for a list of quantiles.

3. Random sample II. 40

Consider a distribution $\mathcal{D}(\theta_1, \theta_2)$ that depends on two parameters

$$0 < \theta_1 < 1$$
 and $\theta_2 > 0$

and whose density is given by:

$$f_{\theta_1,\theta_2}(x) = \frac{1-\theta_1}{\theta_2} \cdot \exp\left\{\frac{x}{\theta_2}\right\} \cdot I_{(-\infty,0)}(x) + \frac{\theta_1}{\theta_2} \cdot \exp\left\{-\frac{x}{\theta_2}\right\} \cdot I_{[0,\infty)}(x)$$

We consider a random sample of size n:

$$X_1,\ldots,X_n \sim \mathcal{D}(\theta_1,\theta_2)$$

(a) Give the likelihood without using indicator functions or case distinctions. 5 <u>HINT</u>: Use the order statistics and assume that you have the relationship:

$$X_{(1)} \le \dots \le X_{(n-K)} < 0 \le X_{(n-K+1)} \le \dots < X_{(n)}$$

so that K out of n random variables take non-negative values.

(b) Show that the log likelihood is then given by:

$$l(\theta_1, \theta_2) = K \cdot \log(\theta_1) + (n - K) \cdot \log(1 - \theta_1) - n \cdot \log(\theta_2) - \frac{S}{\theta_2}$$

where $S := \sum_{i=1}^n |X_i|$ 5

$$\underline{\text{HINT}}: \qquad \sum_{i=1}^{n-K} X_{(i)} + \sum_{i=n-K+1}^{n} -X_{(i)} = -S$$

For the following exercise parts (c-g), we assume that θ_2 is a known parameter, and we let K denote the number of non-negative realisations in the sample.

- (c) Show that K is a sufficient statistic for θ_1 . 5
- (d) Show that $P(X_1 > 0) = \theta_1$. 5
- (e) Compute E[K]. 5.
- (f) Compute the ML estimator of θ_1 and show that it is unbiased. 5+5
- (g) Show that the Fisher information for sample size n = 1 is $I(\theta_1) = \frac{1}{\theta_1(1-\theta_1)}$. 5